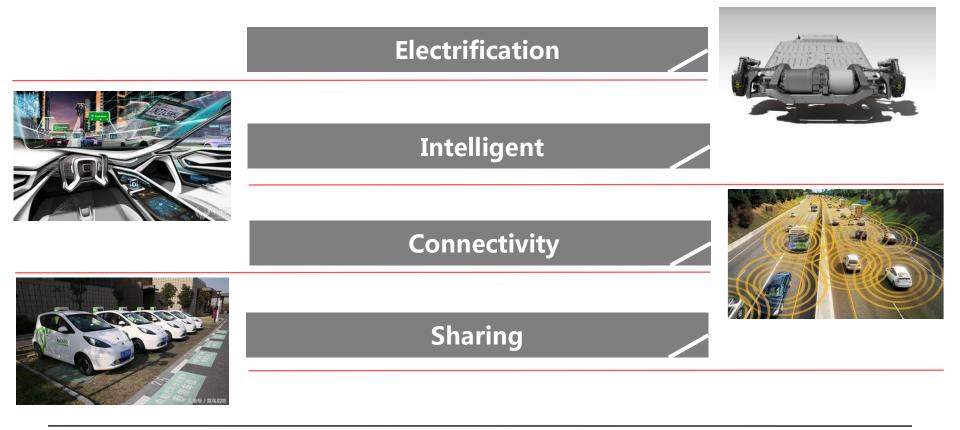
NEW ENERGY VEHICLE DEVELOPMENT IN CHINA - A CHINESE E-DRIVE SUPPLIER'S PERSPECTIVE

Xingyi Xu Shanghai Dajun Technologies, Inc.


1 Revolution in Auto Industry

2 NEV Development in China

3 Opportunities and Challenges for Chinese eDrive Suppliers

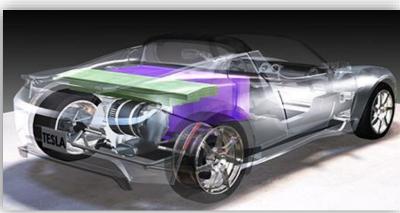
4 Dajun Introduction

Auto Industry Is Experiencing a Revolutionary Change

SAE INTERNATIONAL

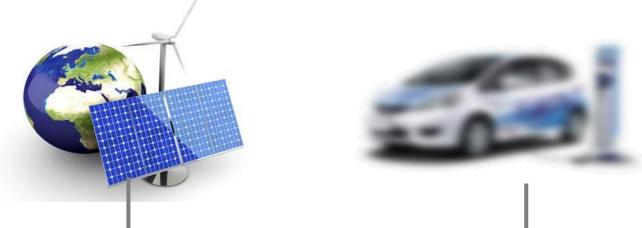
Redefine Auto Industry

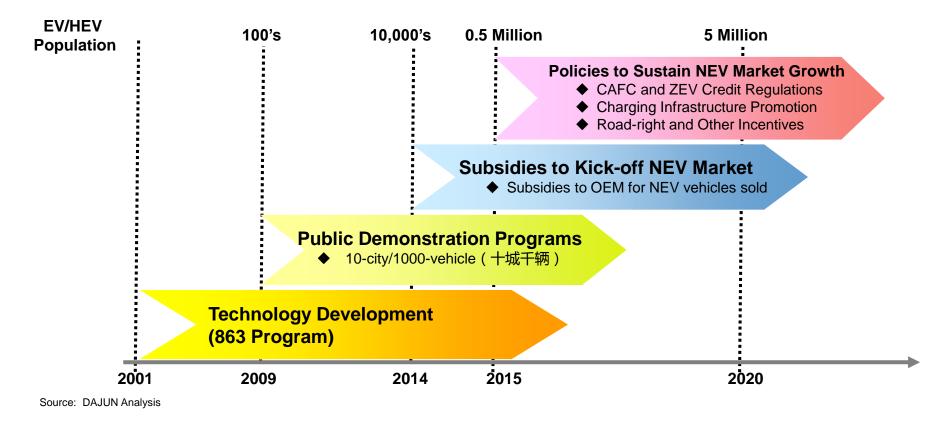
Simplified EV Powertrain would facilitate:


- Standard and modular power chassis
- Personalized car body, interior and driving experience

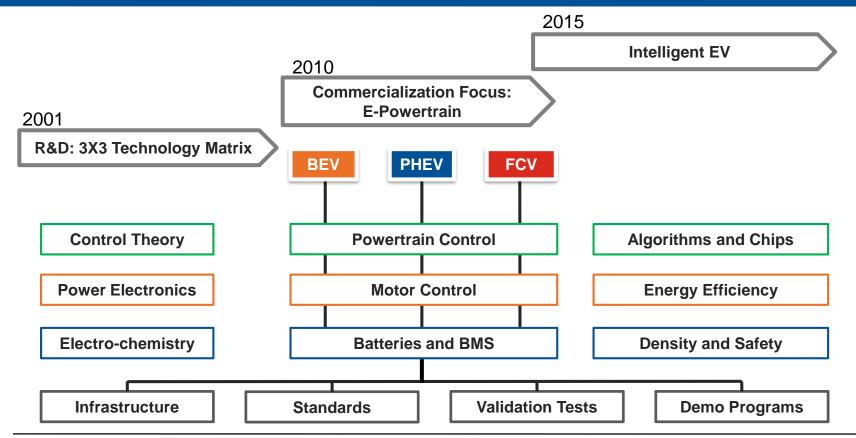
Broader Opportunity for Vehicle OEMs

- Personalized products and better consumer experience
- · Value-added services during the entire vehicle life


Better Opportunities for Suppliers to Implement Large-scale Automated Production of Standardized Powertrain Components



Redefine "Fueling System"


- With the increasing use of plug-in vehicles, as well as the continuous improvement of battery and fuel cell technologies, electricity is becoming more and more important energy form for transportation;
- > The batteries in new energy vehicles can play the role of energy storage components for distributed, intelligent renewable grid systems;
- Charging devices (including vehicle-mounted charging apparatus) will have a vast market prospects.

China EV/HEV Development History

NEV Technology Development in China

Roadmap by Chinese MIIT

	Carbon emission for auto industry peaks around 2028								
GC		NEVs become mainstream products, achieving electrification							
Goals	Technology	nd Connected Vehicles (ICV	/s)						
	itive NEV component indus	stry							
	2020年 2025年 20								
Maj	Energy-saving Vehicles	CAFC: 5L/100km	CAFC: 4L/100km	CAFC: 3.2L/100km					
Major Milestones	NEV	Market Penetration: ≥7%	Market Penetration: ≥15%	Market Penetration: ≥ 40%					
tones	ICV	Partial Autonomous Vehicle Market Penetration: 50%	Hi-level Autonomous Veh. Market Penetration: 15%	Fully Autonomous Vehicle Market Penetration: 10%					

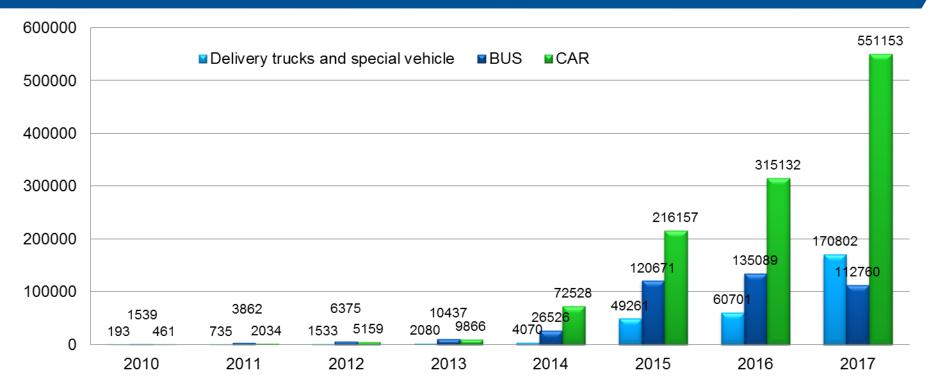
SAE INTERNATIONAL Sources: Technology Roadmap for Energy-saving and New Energy Vehicles, by Chinese Ministry of Industry and Information Technology, 2016

Chinese Central Government Subsidies for NEVs (2018/2)

Cars										Βι	ises				
Veh type	type Subsidy by EV Ranges (kRMB/Car)				Subsidy			Upper limit (kRMB/Veh.)							
EV	150≤R < 200	200≤R < 250	250≤R < 300	300≤F < 400	182400	R≥50	stand (¥/k		Multiplier		6 <l≤8 m</l≤8 	8 <l≤10 m</l≤10 	L>10 m		
	15	24	34	45	50	/				Battery Density (Wh/kg)					
PHEV/REEV			/	22		EV		115 - 13		>	135				
Delivery Trucks and Special Vehicle			Buses (Non	1200	1	1.1		55	120	180					
					! +	quick		Ekg (Wh/km-kg)							
Subsidy by Battery Size (¥/kWh)Upper limit≤30 kWh30 ~ 50 kWh>50 kWh			charge)	charge) 0.15-0.21 <0.15		0.15									
≤30 kWh			>50 kW	n 、					1 1.1						
850	750 650 100				EV		The charging rate								
FCVs				Buses (Quick	2100	3C - 5C	5C - 1	5C	>15C	40	80	130			
Vehicle type Subsidy by FC Upper I			charge)		0.8 1 1.1		1.1								
Venice type Power (¥/kW) (kRMB/Venice type) Cars 6000 200		-	PHEV/		Fuel-saving rate		ite								
			-				REEV	1500	60% -	65	% -	>70	22	45	75
Light Duty Commercial		u	-		300			1300	65%	70)%	%			, , , , , , , , , , , , , , , , , , , ,
Large Com	ge Commercial - 500 Buses 0.8 1 1.1		1.1												

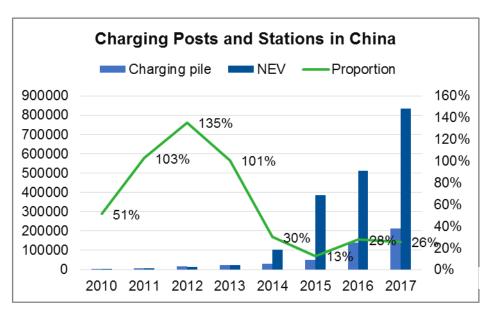
China's Subsidies for NEVs – Progressive Changes

		1	1	T	l Up Limi	it of Subsidie	s for NEV	' Cars (kR	MB)	
		2016	2017	2018	Туре	Range	2016	2017	2018	Change
-	Cars	EV≥100km PHEV≥50km	EV≥100km PHEV≥50km	EV≥150km		100≤R < 150	25	20	0	-100%
Range				PHEV≥50km		150≤R < 200	45	20	15	-58%
ge	_	EV≥150km	EV≥200km	EV≥200km PHEV≥50km	EV Cars	200≤R < 250	45	36	24	-33%
	Buses	Buses PHEV≥50km	PHEV≥50km		Evears	250≤R < 300	55	44	34	-23%
		,				300≤R < 350			45	2.3%
Ekg	EV 0.25 - 0.7 0.24 0.15 - 0.21		350≤R			50	14%			
	Buses		85 – 115 Wh/kg	≥115Wh/kg	PHEV Cars	50≤R	30	24	22	-8%
Battery Density				105 – 120 Wh/kg: 0.6	Up Lim	Up Limits of Subsidies for EV Buses (kRMB)				
ery	Cars		90 – 120 Wh/kg	120 – 140: 1.0 140 – 160: 1.1	Туре	Length (m)	2016	2017	2018	Change
			Non-EV Fuel	≥ 160: 1.2		L < 6	100	0	0	_
Fuel Savir for PHEV	Cars		Consumption ≤70% CAFC	≤65%: 0.5 ≤60%: 1.0		6≤ L<8	250	90	55	-39%
Savings PHEV	≥40%			EV Buses	8≤ L<10	400	200	120	-40%	
, sbu	Buses		≥40% ≥6	≥60%		10≤ L<12	500	300	180	-40%
Ekg: El	nergy consu	mption per kilogr		12≤ L	600	500	100	- 10 /0		


Chinese Government Incentive Regulations

年份	CAFC/ T _{cafc2020}	年下降 百分点	CAFC L/100km	CAFC 年度下降 L/100km	年降幅度
2013	144%	5	7.22	0.16	-2.1%
2014	141%	3	7.06	0.16	-2.2%
2015	138%	3	6.90	0.16	-2.3%
2016	134%	4	6.70	0.20	-2.9%
2017	128%	6	6.40	0.30	-4.5%
2018	120%	8	6.00	0.40	-6.3%
2019	110%	10	5.50	0.50	-8.3%
2020	100%	10	5.00	0.50	-9.1%

China NEV Market Growth 2010-2017

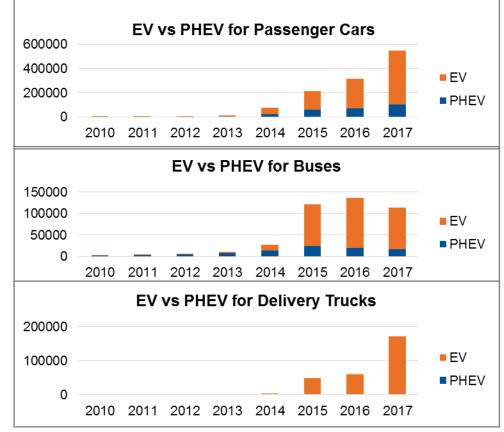


Source : China Association of Automobile Manufacturers

China Is Leading EV Development in the World

Huge total market with a large variety of segments

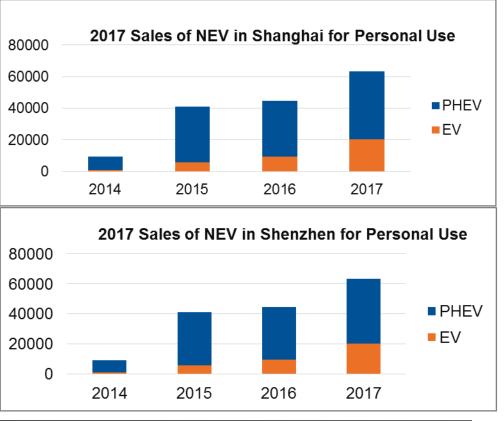
- Car-sharing in large cities vs. personal cars in the countryside;
- Light duty commercial vehicles with various specialties;
- Heavy duty E-trucks; etc.


V	/orldwide NI	EV Sales in 2	2017	
Ranking	Country	Total sales	Proportion	
1	China	463369	53.70%	
2	Japan	107740	12.49%	
3	USA	104487	12.11%	
4	Norway	33439	3.88%	
5	France	32305	3.74%	
6	Germany	27583	3.20%	
7	England	22141	2.57%	
8	Korea	13541	1.57%	
9	Holland	8771	1.02%	
10	Canada	8057	0.93%	
Source: Marklines				

Source: Perspective research institute

E-Powertrain is the Strategic Technology Focus for China

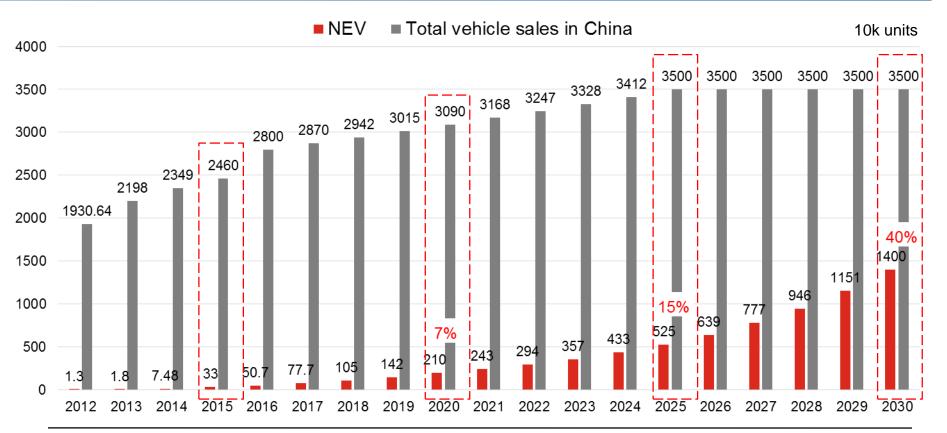
- Increasing emission concerns, especially in cities;
- Flexible energy sources for transportation;
- Simple and easy technology that matches with the current capabilities for Chinese auto industry;
- Natural combination of EV and Autonomous Vehicles;


Battery and charging infrastructure are limiting factors

Source : China Association of Automobile Manufacturers

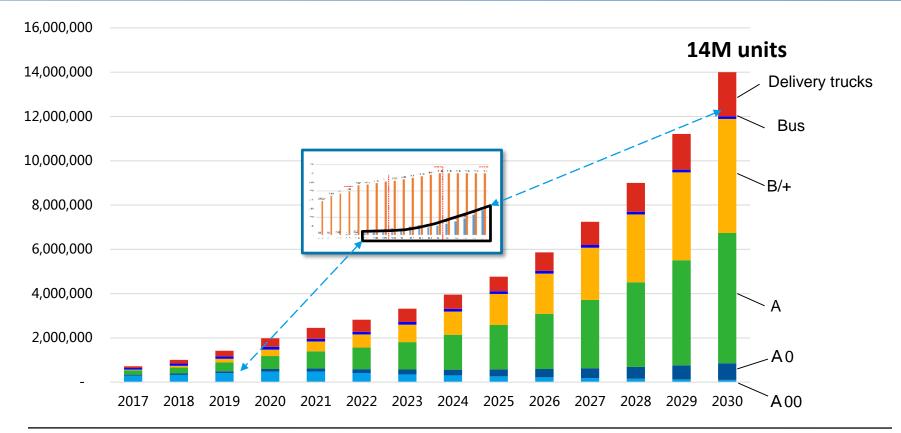
PHEVs Deserve More Attention

- Given the choice, PHEVs would be preferred by Chinese consumers today;
- PHEV challenges: engine and transmission technologies;
- Chinese OEMs plan to develop PHEVs to satisfy both consumer needs and government regulations;


Source : China Association of Automobile Manufacturers

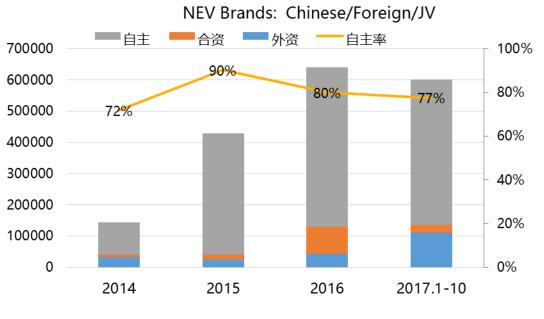
Comparison of NEV Powertrains

 EV: Simple Easy to implement standardized and modular design Suitable for autonomous drive Suitable for V2G integration Limited by battery and charging infrastructure 	 PHEV: Proven technology Can meet consumers' needs Complicated system Requires in-depth capability of engine, transmission and integration Long PD cycle High cost 	 REEV: No range limit Superior emission Simple, compatible with China's Industry capability Seamless transition to EV and FCV Fuel economy is slightly inferior to PHEV at high speed cruising 	 FCV: H2 is expected to be the future energy source Current R/D focus Rapid progress achieved in reliability and cost Need relatively long development time due to H2 infrastructure
---	---	--	---

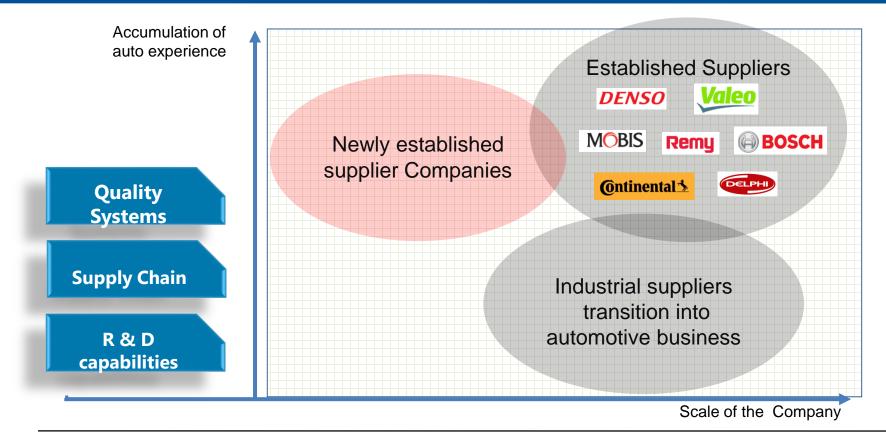

EV vs. PHEV in China?

China Auto Market Forecast: 2017-2030

SAE INTERNATIONAL

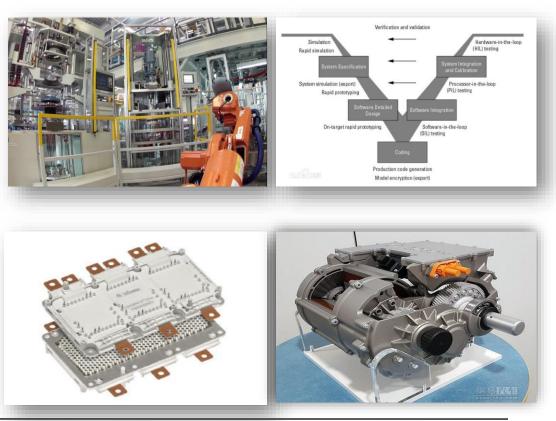

China NEV Market Forecast: 2017-2030

Foreign OEMs Accelerate Penetration into Chinese NEV Market



Market penetration of foreign brands is on the rise, the cumulative sales in 2017 accounted for 23% (including HEV)

Source : China Association of Automobile Manufacturers


Competition Landscape for Motor & Power Electronics Suppliers

Challenges for Chinese NEV Suppliers

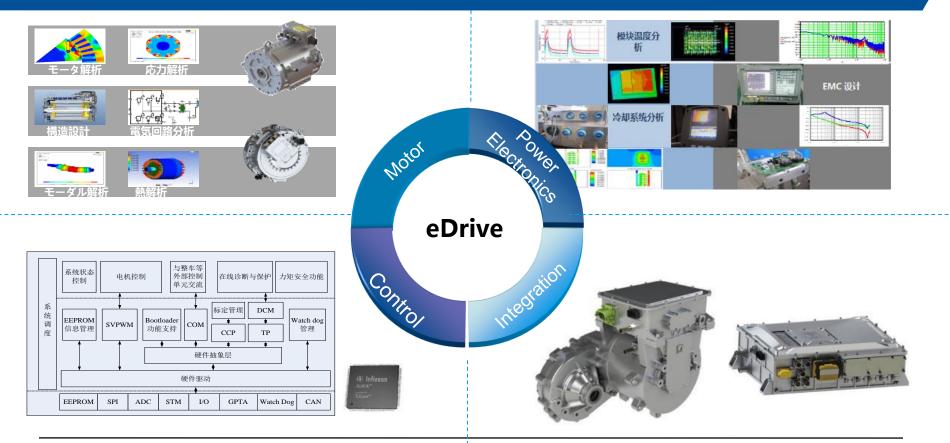
Chinese suppliers lag their foreign competitors in following areas:

- Automotive application experiences
- Product development capabilities
- Core components such as IGBTs and high speed gearbox/ transmission
- Intelligent and high quality manufacturing technologies
- Systemic management compatible with automotive industry

Opportunities for Chinese eDrive Suppliers

- Huge NEV market with large varieties of segments opportunities to develop products most suitable for Chinese market;
- Close relationship with Chinese OEM and end users;
- Strong government support;
- Readily available capitals;
- Adequate supply chain with low cost capabilities;
- More available rare earth material for PM motors.

Dajun Company Overview


Mission:

To provide green powertrain for people's mobility.

Established	11. 11. 2005
Employees	600 (35% Technical Staff)
Main	Motor Drives for
Business	EV/HEV

Dajun Design Capabilities

Test Capabilities

Durability Dyno

Temperature & Power Cycling

Temperature/Humidity Cycling

Vibration/Temp/Power Cycling

Motor Submerge

Salt Spray

Controller Submerge

EMC

Shock Test

Noise

Temperature Shock

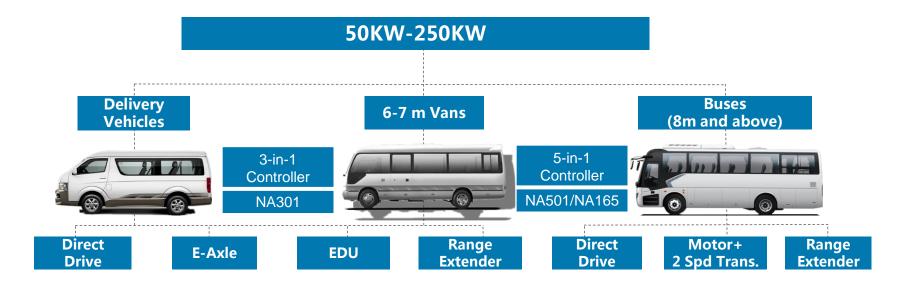
Manufacturing

Dajun Product Lines – Passenger Car

25KW-150KW

EV Motor / Inverter

PHEV Dual Motor



Electric Drive Unit

Dajun Product Lines – Buses/Commercial Vehicles

Dajun Customers

Future is Here

Thank you for your Attention

Dr. Xingyi Xu

Shanghai Dajun Technologies, Inc. xuxy@dajuntech.com